• Newsletters-Sucess101
  • Submit Project
  • View Projects
  • Instructors Guides
  • ASEE papers
  • Share Syllabi
  • View Syllabi
  • Student Testimonials
  • Instructor Testimonials
  • Submit Testimonial
  • Interesting Topics
  • Current Statistics

  • Back to book  |  Preface  |  Table of contents  |  MicroCap 7  |  Innovations  |  Errata


    Electronic Design

    From Concept to Reality

    Third Edition

     
    TABLE OF CONTENTS
     
    Chapter 1: BASIC CONCEPTS
    Chapter 2: IDEAL OPERATIONAL AMPLIFIERS
    Chapter 3: SEMICONDUCTOR DIODE CIRCUIT ANALYSIS
    Chapter 4: BIPOLAR JUNCTION TRANSISTOR CIRCUITS
    Chapter 5: BIPOLAR JUNCTION TRANSISTOR AMPLIFIERS
    Chapter 6: FIELD-EFFECT TRANSISTOR AMPLIFIERS

    Chapter 7:

    BIAS STABILITY OF TRANSISTOR AMPLIFIERS
    Chapter 8: POWER AMPLIFIERS AND POWER SUPPLIES
    Chapter 9: PRACTICAL OPERATIONAL AMPLIFIERS
    Chapter 10: FREQUENCY BEHAVIOR OF TRANSISTOR AMPLIFIERS
    Chapter 11: FEEDBACK AND STABILITY
    Chapter 12: ACTIVE FILTERS
    Chapter 13: QUASI-LINEAR CIRCUITS
    Chapter 14: PULSED WAVEFORMS AND TIMING CIRCUITS
    Chapter 15: DIGITAL LOGIC FAMILIES
    Chapter 16: DIGITAL INTEGRATED CIRCUITS
     
    PREFACE
    INTRODUCTION TO THE STUDENT
    CHAPTER 1 - BASIC CONCEPTS
      1.0 Introduction
    1.1 History, 1
    1.2 Solid State Circuit Models, 3
    1.3 Linear and Nonlinear Circuit Elements, 4
    1.4 Analog vs. Digital Signals, 6
    1.5 Dependent Sources, 7
    1.6 Frequency Effects, 8
    1.7 Analysis and Design, 10
        1.7.1 Comparison of Design and Analysis, 10
    1.7.2 Origin of Design Requirements, 10
    1.7.3 What Do "Open-Ended" and "Trade Off" Mean?, 11
      1.8 Computer Simulations, 13
    1.9 Components of the Design Process, 14
        1.9.1 Principles of Design, 15
    1.9.2 Problem Definition, 16
    1.9.3 Subdividing the Problem, 17
    1.9.4 Documentation, 17
    1.9.5 The Schematic Diagram, 18
    1.9.6 The Parts List, 18
    1.9.7 Running Lists and Other Documentation, 19
    1.9.8 Using Documents, 20
    1.9.9 Design Checklist, 20
    1.9.10 Prototyping the Circuit, 21
      Summary, 23
        [ Return to top ]
         
    CHAPTER 2 - IDEAL OPERATIONAL AMPLIFIERS
      2.0 Introduction, 24
    2.1 Ideal Op-Amps, 25
        2.1.1 Dependent Sources, 25
    2.1.2 Operational Amplifier Equivalent Circuit, 27
    2.1.3 Analysis Method, 30
      2.2 The Inverting Amplifier, 30
    2.3 The Non-Inverting Amplifier, 33
    2.4 Input Resistance of Op-Amp Circuits, 41
    2.5 Combined Inverting and Non-Inverting Inputs, 44
    2.6 Design of Op-Amp Circuits, 46
    2.7 Other Op-Amp Applications, 52
        2.7.1 Negative Impedance Circuit, 52
    2.7.2 Dependent-Current Generator, 53
    2.7.3 Current-to-Voltage Converter, 54
    2.7.4 Voltage-to-Current Converter, 55
    2.7.5 Inverting Amplifier with Impedances, 56
    2.7.6 Analog Computer Applications, 57
    2.7.7 Non-Inverting Miller Integrator, 59
      Summary, 60
    Problems, 60
        [ Return to top ]
         
    CHAPTER 3 - SEMICONDUCTOR DIODE CIRCUIT ANALYSIS
      3.0 Introduction, 70
    3.1 Theory of Semiconductors, 71
        3.1.1 Conduction in Materials, 73
    3.1.2 Conduction in Semiconductor Materials, 75
    3.1.3 Crystalline Structure, 76
    3.1.4 Generation and Recombination of Electrons and Holes, 78
    3.1.5 Doped Semiconductors, 79
    3.1.6 n-type Semiconductor, 80
    3.1.7 p-type Semiconductor, 80
    3.1.8 Carrier Concentrations, 80
    3.1.9 Excess Carriers, 82
    3.1.10 Recombination and Generation of Excess Carriers, 82
    3.1.11 Transport of Electric Current, 83
    3.1.12 Diffusion of Carriers, 83
    3.1.13 Drift in an Electric Field, 84
      3.2 Semiconductor Diodes, 87
        3.2.1 Diode Construction, 89
    3.2.2 Relationship Between Diode Current and Diode Voltage, 90
    3.2.3 Diode Operation, 92
    3.2.4 Temperature Effects, 93
    3.2.5 Diode Equivalent Circuit Models, 95
    3.2.6 Diode Circuit Analysis, 96
         Graphical Analysis, 96
         Piecewise-Linear Approximation, 99
    3.2.7 Power Handling Capability, 103
    3.2.8 Diode Capacitance, 104
      3.3 Rectification, 104
        3.3.1 Half-Wave Rectification, 105
    3.3.2 Full-Wave Rectification, 106
    3.3.3 Filtering, 107
    3.3.4 Voltage Doubling Circuit, 110
      3.4 Zener Diodes, 112
        3.4.1 Zener Regulator, 113
    3.4.2 Practical Zener Diodes and Percent Regulation, 117
      3.5 Clippers and Clampers, 119
        3.5.1 Clippers, 119
    3.5.2 Clampers, 124
      3.6 Op-Amp Circuits Containing Diodes, 127
    3.7 Alternate Types of Diodes, 129
        3.7.1 Schottky Diodes, 129
    3.7.2 Light-Emitting Diodes (LED), 130
    3.7.3 Photo Diodes, 131
      3.8 Manufacturers' Specifications, 132
    Summary, 133
    Problems, 134
        [ Return to top ]
         
    CHAPTER 4 - BIPOLAR JUNCTION TRANSISTOR CIRCUITS
      4.0 Introduction, 149
    4.1 Structure of Bipolar Transistors, 149
    4.2 Large-Signal BJT Model, 153
    4.3 Derivation of Small-Signal ac Models, 154
    4.4 Two-Port Small Signal ac Models, 156
    4.5 Characteristic Curves, 158
    4.6 Manufacturers' Data Sheets for BJTs, 160
    4.7 BJT Models for Computer Simulations, 161
    4.8 Single-Stage Amplifier Configurations, 164
    4.9 Biasing of Single-Stage Amplifiers, 166
    4.10 Power Considerations, 169
        4.10.1 Derivation of Power Equations, 170
      4.11 Analysis and Design of Voltage Amplifier Bias Circuits, 172
        4.11.1 Analysis Procedure, 172
    4.11.2 Design Procedure, 177
    4.11.3 Amplifier Power Sources, 183
    4.11.4 Selection of Components, 184
      4.12 Analysis and Design of Current Amplifier Bias Circuits, 184
    4.13 Nonlinearities of Bipolar Junction Transistors188
    4.14 On-Off Characteristics of BJT Circuits, 190
    4.15 Integrated Circuit Fabrication, 192
        4.15.1 Transistor and Diodes, 192
    4.15.2 Resistors, 193
    4.15.3 Capacitors, 193
    4.15.4 Lateral Transistor, 194
      Summary, 194
    Problems, 195
        [ Return to top ]
         
    CHAPTER 5 - BIPOLAR JUNCTION TRANSISTOR AMPLIFIERS
      5.0 Introduction, 207
    5.1 Common-Emitter Amplifier, 208
        5.1.1 Gain Impedance Formula, 208
    5.1.2 Input Resistance, Rin, 209
    5.1.3 Current Gain, Ai, 210
    5.1.4 Voltage Gain, Av, 210
    5.1.5 Output Resistance, Ro, 211
      5.2. Common-Emitter with Emitter Resistor (Emitter-Resistor Amplifier), 213
        5.2.1 Input Resistance, Rin, 213
    5.2.2 Current Gain, Ai, 215
    5.2.3 Voltage Gain, Av, 215
    5.2.4 Output Resistance, Ro, 215
      5.3 Common-Collector (Emitter-Follower) Amplifier, 224
        5.3.1 Input Resistance, Rin, 224
    5.3.2 Current Gain, Ai, 225
    5.3.3 Voltage Gain, Av, 225
    5.3.4 Output Resistance, Ro, 226
      5.4 Common-Base Amplifier, 230
        5.4.1 Input Resistance, Rin, 231
    5.4.2 Current Gain, Ai, 231
    5.4.3 Voltage Gain, Av, 232
    5.4.4 Output Resistance, Ro, 232
      5.5 Transistor Amplifier Applications, 236
    5.6 Phase Splitter, 237
    5.7 Amplifier Coupling, 238
        5.7.1 Capacitive Coupling, 238
    5.7.2 Direct Coupling, 238
    5.7.3 Transformer Coupling, 241
    5.7.4 Optical Coupling, 243
      5.8 Multistage Amplifier Analysis, 245
    5.9 Cascode Configuration, 250
    5.10 Current Sources and Active Loads, 252
       

    5.10.1 A Simple Current Source, 252
    5.10.2 Widlar Current Source, 253
    5.10.3 Wilson Current Source, 256
    5.10.4 Multiple Current Sources Using Current Mirrors, 258

      Summary, 259
    Problems, 262
        [ Return to top ]
         
    CHAPTER 6 - FIELD-EFFECT TRANSISTOR AMPLIFIERS
      6.0 Introduction, 277
    6.1 Advantages and Disadvantages of FETs, 278
    6.2 Metal-Oxide Semiconductor FET (MOSFET), 279
        6.2.1 Enhancement-Mode MOSFET Terminal Characteristics, 281
    6.2.2 Depletion-Mode MOSFET, 284
    6.2.3 Large-Signal Equivalent Circuit, 287
    6.2.4 Small-Signal Model of MOSFET, 287
      6.3 Junction Field-Effect Transistor (JFET), 290
        6.3.1 JFET Gate-to-Source Voltage Variation, 293
    6.3.2 JFET Transfer Characteristics, 293
    6.3.3 JFET Small-Signal ac Model, 296
      6.4 FET Amplifier Configurations and Biasing, 299
        6.4.1 Discrete-Component MOSFET Biasing, 299
      6.5 MOSFET Integrated Circuits, 302
        6.5.1 Biasing of MOSFET Integrated Circuits, 303
    6.5.2 Body Effect, 305
      6.6 Comparison of MOSFET to JFET, 306
    6.7 FET Models for Computer Simulations, 308
    6.8 FET Amplifiers - Canonical Configurations, 312
    6.9 FET Amplifier Analysis, 314
        6.9.1 The CS (and Source Resistor) Amplifier, 314
    6.9.2 The CG Amplifier, 319
    6.9.3 The CD (SF) Amplifier, 323
      6.10 FET Amplifier Design, 326
        6.10.1 The CS Amplifier, 326
    6.10.2 The CD Amplifier, 336
    6.10.3 The SF Bootstrap Amplifier, 340
      6.11 Other Devices, 343
        6.11.1 Metal Semiconductor Barrier Junction Transistor, 343
    6.11.2 VMOSFET, 344
    6.10.3 Other MOS Devices, 344
      Summary, 345
    Problems, 346
        [ Return to top ]
         
    CHAPTER 7 - BIAS STABILITY OF TRANSISTOR AMPLIFIERS
      7.0 Introduction, 358
    7.1 Types of Biasing, 358
        7.1.1 Current Feedback Biasing, 359
    7.1.2 Voltage and Current Biasing, 360
      7.2 Effects of Parameter Changes - Bias Stability, 362
        7.2.1 CE Configuration, 363
    7.2.2 EF Configuration, 369
      7.3 Diode Compensation, 372
    7.4 Designing for BJT Amplifier Bias Stability, 374
    7.5 FET Temperature Effects, 375
    7.6 Reducing Temperature Variations, 377
    Summary, 379
    Problems, 380
        [ Return to top ]
         
    CHAPTER 8 - POWER AMPLIFIERS AND POWER SUPPLIES
      8.0 Introduction, 384
    8.1 Classes of Amplifiers, 384
        8.1.1 Class-A Operation, 385
    8.1.2 Class-B Operation, 385
    8.1.3 Class-AB Operation, 387
    8.1.4 Class-C Operation, 388
      8.2 Power Amplifier Circuits - Class-A Operation, 389
        8.2.1 Inductively-Coupled Amplifier, 389
    8.2.2 Transformer-Coupled Power Amplifier, 391
      8.3 Power Amplifier Circuits - Class-B Operation, 395
        8.3.1 Complementary Symmetry Class-B and -AB Power Amplifier, 395
    8.3.2 Diode-Compensated Complementary-Symmetry Class-B Power Amps (CSDC), 398
    8.3.3 Power Calculations for Class-B Push-Pull Amplifier, 401
      8.4 Darlington Circuit, 408
    8.5 Power Supply Using Power Transistors, 413
        8.5.1 Power Supply Using Discrete Components, 413
    8.5.2 Power Supply Using IC Regulator (Three-Terminal Regulator), 417
    8.5.3 Power Supply Using Three-Terminal Adjustable Regulator, 421
    8.5.4 Higher-Current Regulator, 422
      8.6 Switching Regulators, 423
        8.6.1 Efficiency of Switching Regulators, 425
      Summary, 425
    Problems, 426
        [ Return to top ]
         
    CHAPTER 9 - PRACTICAL OPERATIONAL AMPLIFIERS
      9.0 Introduction, 437
    9.1 Differential Amplifiers, 438
        9.1.1 dc Transfer Characteristics, 438
    9.1.2 Common-Mode and Differential-Mode Gains, 439
    9.1.3 Differential Amplifier with Constant Current Source, 442
    9.1.4 Differential Amplifier with Single-Ended Input and Output, 445
      9.2 Level Shifters, 451
    9.3 The Typical Op-Amp, 454
        9.3.1 Packaging, 455
    9.3.2 Power Requirements, 456
    9.3.3 The 741 Op-Amp, 456
         Bias Circuits, 457
         Short Circuit Protection, 457
         Input Stage, 458
         Intermediate Stage, 458
         Output Stage, 458
      9.4 Manufacturers' Specifications, 459
    9.5 Practical Op-Amps, 459
        9.5.1 Open-Loop Voltage Gain (G), 460
    9.5.2 Modified Op-Amp Model, 461
    9.5.3 Input Offset Voltage (Vio), 461
    9.5.4 Input Bias Current (Ibias), 463
    9.5.5 Common-Mode Rejection, 467
    9.5.6 Power Supply Rejection Ratio, 467
    9.5.7 Output Resistance, 468
      9.6 Computer Simulation of Op-Amp Circuits, 471
    9.7 Non-Inverting Amplifier, 473
       

    9.7.1 Input and Output Resistance, 473
    9.7.2 Voltage Gain, 475
    9.7.3 Multiple-Input Amplifier, 478

      9.8 Inverting Amplifier, 479
        9.8.1 Input and Output Resistance, 479
    9.8.2 Voltage Gain, 480
    9.8.3 Multiple-Input Amplifiers, 482
      9.9 Differential Summing, 485
    9.10 Amplifiers with Balanced Inputs or Outputs, 489
    9.11 Coupling Between Multiple Inputs, 492
    9.12 Power Audio Op-Amps, 493
        9.12.1 Bridge Power Op-Amp, 494
    9.12.2 Intercom, 495
      Summary, 496
    Problems, 496
        [ Return to top ]
         
    CHAPTER 10 - FREQUENCY BEHAVIOR OF TRANSISTOR AMPLIFIERS
      10.0 Introduction, 509
    10.1 Low-Frequency Response of Amplifiers, 513
        10.1.1 Low-Frequency Response of Emitter-Resistor Amplifier, 513
    10.1.2 Design for a Given Frequency Characteristic, 518
    10.1.3 Low-Frequency Response of Common-Emitter Amplifier, 522
    10.1.4 Low-Frequency Response of Common-Source Amplifier, 525
    10.1.5 Low-Frequency Response of Common-Base Amplifier, 528
    10.1.6 Low-Frequency Response of Emitter-Follower Amplifier, 529
    10.1.7 Low-Frequency Response of Source-Follower Amplifier, 530
      10.2 High-Frequency Transistor Models, 532
        10.2.1 Miller Theorem, 533
    10.2.2 High-Frequency BJT Model, 534
    10.2.3 High-Frequency FET Model, 537
      10.3 High-Frequency Response of Amplifiers, 538
        10.3.1 High-Frequency Response of Common-Emitter Amplifier, 538
    10.3.2 High-Frequency Response of Common-Source Amplifier, 542
    10.3.3 High-Frequency Response of Common-Base Amplifier, 544
    10.3.4 High-Frequency Response of Emitter-Follower Amplifier, 546
    10.3.5 High-Frequency Response of Common-Drain(SF) Amplifier, 548
    10.3.6 Cascode Amplifiers, 549
      10.4 High-Frequency Amplifier Design, 550
    10.5 Frequency Response of Op-Amp Circuits, 550
        10.5.1 Open-Loop Op-Amp Response554
    10.5.2 Phase Shift, 557
    10.5.3 Slew Rate, 557
    10.5.4 Designing Amplifiers Using Multiple Op-Amps, 560
    10.5.5 101 Amplifier, 567
      Summary, 570
    Problems, 571
        [ Return to top ]
         
    CHAPTER 11 - FEEDBACK AND STABILITY
      11.0 Introduction, 585
    11.1 Feedback Amplifier Considerations, 586
    11.2 Types of Feedback, 587
    11.3 Feedback Amplifiers, 588
        11.3.1 Current Feedback - Voltage Subtraction for Discrete Amplifiers, 588
    11.3.2 Voltage Feedback - Current Subtraction for a Discrete Amplifiers, 592
      11.4 Multistage Feedback Amplifiers, 594
    11.5 Feedback in Operational Amplifiers, 595
    11.6 Stability of Feedback Amplifiers, 599
        11.6.1 System Stability and Frequency Response, 601
    11.6.2 Bode Plots and System Stability, 605
      11.7 Frequency Response - Feedback Amplifier, 610
        11.7.1 Single-Pole Amplifier, 610
    11.7.2 Two-Pole Amplifier, 611
      11.8 Design of a Three-Pole Amplifier With Lead Equalizer, 617
    11.9 Phase-Lag Equalizer, 623
    11.10 Effects of Capacitive Loading, 624
    11.11 Oscillators, 625
        11.11.1 The Colpitts and Hartley Oscillators, 625
    11.11.2 The Wien Bridge Oscillator, 626
    11.11.3 The Phase Shift Oscillator, 628
    11.11.4 The Crystal Oscillator, 629
    11.11.5 Touch-Tone Generator, 631
      Summary, 631
    Problems, 633
        [ Return to top ]
         
    CHAPTER 12 - ACTIVE FILTERS
      12.0 Introduction, 641
    12.1 Integrators and Differentiators, 641
    12.2 Active Network Design, 645
    12.3 Active Filters, 648
        12.3.1 Filter Properties and Classification, 649
    12.3.2 First-Order Active Filters, 655
      12.4 Single Amplifier - General Type, 666
    12.5 Classical Analog Filters, 668
        12.5.1 Butterworth Filters, 669
    12.5.2 Chebyshev Filters, 672
      12.6 Transformations, 674
        12.6.1 Low-Pass to High-Pass Transformation, 674
    12.6.2 Low-Pass to Band-Pass Transformation, 675
      12.7 Design of Butterworth and Chebyshev Filters, 676
        12.7.1 Low-Pass Filter Design, 677
    12.7.2 Filter Order, 677
    12.7.3 Parameter Scale Factor, 680
    12.7.4 High-Pass Filter, 688
    12.7.5 Band-Pass and Band-Stop Filter Design, 690
      12.8 Integrated Circuit Filters, 694
        12.8.1 Switched-Capacitor Filters, 695
    12.8.2 Sixth-Order Switched-Capacitor Butterworth Low-Pass Filter, 697
      12.9 Concluding Remarks, 699
    Summary, 699
    Problems, 700
        [ Return to top ]
         
    CHAPTER 13 - QUASI-LINEAR CIRCUITS
      13.0 Introduction, 706
    13.1 Rectifiers, 706
    13.2 Feedback Limiters, 717
    13.3 Comparators, 731
    13.4 Schmitt Triggers, 735
        13.4.1 Schmitt Triggers with Limiters, 738
    13.4.2 Integrated Circuit Schmitt Trigger, 744
      13.5 Conversion Between Analog and Digital, 746
        13.5.1 Digital-to-Analog Converter, 746
    13.5.2 Analog-to-Digital Converter, 747
      Summary, 751
    Problems, 752
        [ Return to top ]
         
    CHAPTER 14 - PULSED WAVEFORMS AND TIMING CIRCUITS
      14.0 Introduction, 760
    14.1 High-Pass RC Network, 762
        14.1.1 Steady-State Response of High-Pass Network to Pulse Train, 766
      14.2 Steady-State Response Low-Pass RC Network to Pulse Train, 771
    14.3 Diodes, 777
        14.3.1 Steady-State Response of Diode Circuit to Pulse Train, 777
      14.4 Trigger Circuits, 781
        14.4.1 Pulse Train Response, 782
      14.5 The 555 Timer, 783
        14.5.1 The Relaxation Oscillator, 784
    14.5.2 The 555 as an Oscillator, 787
    14.5.3 The 555 as a Monostable Circuit, 794
      Summary, 796
    Problems, 797
        [ Return to top ]
         
    CHAPTER 15 - DIGITAL LOGIC FAMILIES
      15.0 Introduction, 805
    15.1 Basic Concepts of Digital Logic, 805
        15.1.1 State Definitions - Positive and Negative Logic, 806
    15.1.2 Time-Independent or Unclocked Logic, 807
    15.1.3 Time-Dependent or Clocked Logic, 807
    15.1.4 Elementary Logic Functions, 807
    15.1.5 Boolean Algebra, 811
      15.2 IC Construction and Packaging, 812
    15.3 Practical Considerations in Digital Design, 814
    15.4 Digital Circuit Characteristics of BJTs, 817
    15.5 Bipolar Logic Families, 818
    15.6 Transistor-Transistor Logic (TTL), 818
        15.6.1 Open Collector Configurations, 820
    15.6.2 Active Pull Up, 823
    15.6.3 H-TTL and LP-TTL Gates, 828
    15.6.4 Schottky TTL Gates, 828
    15.6.5 Tri-State Gates, 829
    15.6.6 Device Listings, 831
      15.7 Emitter-Coupled Logic (ECL), 832
        15.7.1 Device Listings, 834
      15.8 Digital Circuit Characteristics of FETs, 835
        15.8.1 The n-Channel Enhancement MOSFET, 835
    15.8.2 The p-Channel Enhancement MOSFET, 835
      15.9 FET Transistor Families, 836
        15.9.1 n-Channel MOS, 836
    15.9.2 p-Channel MOS, 836
      15.10 Complementary MOS (CMOS), 837
        15.10.1 CMOS Analog Switch, 841
    15.10.2 CMOS Device Listings and Usage Rules, 843
      15.11 Comparison of Logic Families, 845
    Summary, 847
    Problems, 848
        [ Return to top ]
         
    CHAPTER 16 - DIGITAL INTEGRATED CIRCUITS
      16.0 Introduction, 856
    16.1 Decoders and Encoders, 857
        16.1.1 Data Selector/Multiplexer, 860
    16.1.2 Keyboard Encoders/Decoders, 862
    16.1.3 Parity Generators/Checkers, 864
      16.2 Drivers and Associated Systems, 864
        16.2.1 The Liquid Crystal Display (LCD), 867
      16.3 Flip-Flops, Latches, and Shift Registers, 868
        16.3.1 Flip-Flops, 870
    16.3.2 Latches and Memories, 875
    16.3.3 Shift Registers, 877
      16.4 Counters, 879
        16.4.1 Frequency Measurement, 886
      16.5 Clocks, 889
        16.5.1 Voltage Controlled Oscillator, 889
      16.6 Memories, 892
        16.6.1 Serial Memories, 892
    16.6.2 Random Access Memory (RAM), 895
    16.6.3 ROMs and PROMs, 896
    16.6.4 EPROMs, 897
      16.7 More Complex Circuits, 899
        16.7.1 Arithmetic Logic Unit (ALU), 899
    16.7.2 Full Adders, 900
    16.7.3 Look-Ahead Carry Generators, 900
    16.7.4 Magnitude Comparator, 902
      16.8 Programmable Array Logic (PAL), 903
    16.9 Introduction to Problems, 903
        16.9.1 Generating Random Numbers, 904
    16.9.2 Measurement of Mechanical Angle of Velocity, 904
    16.9.3 The Hall-Effect Switch, 905
    16.9.4 Use of Timing Windows, 906
      16.10 Concluding Remarks, 907
    Problems, 908
        [ Return to top ]
         
    APPENDICES
    A. Micro-Cap and SPICE, 929
    B. Standard Component Values, 944
    C. Manufacturers' Data Sheets, 946
    D. Answer to Selected Problems , 985
      [ Return to top ]

    Electronic Design

    Back to book  |  Preface  |  Table of contents  |  MicroCap 7  |  Innovations  |  Errata

     

    Discovery Press © 2006, All rights reserved. Privacy Policy